Nature Inspired Multi-Swarm Heuristics for Multi-Knowledge Extraction
نویسندگان
چکیده
Multi-knowledge extraction is significant for many real-world applications. The nature inspired population-based reduction approaches are attractive to find multiple reducts in the decision systems, which could be applied to generate multi-knowledge and to improve decision accuracy. In this Chapter, we introduce two nature inspired populationbased computational optimization techniques namely Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) for rough set reduction and multi-knowledge extraction. A Multi-Swarm Synergetic Optimization (MSSO) algorithm is presented for rough set reduction and multi-knowledge extraction. In the MSSO approach, different individuals encodes different reducts. The proposed approach discovers the best feature combinations in an efficient way to observe the change of positive region as the particles proceed throughout the search space. We also attempt to theoretically prove that the multi-swarm synergetic optimization algorithm converges with a probability of 1 towards the global optimal. The performance of the proposed approach is evaluated and compared with Standard Particle Swarm Optimization (SPSO) and Genetic Algorithms (GA). Empirical results illustrate that the approach can be applied for multiple reduct problems and multi-knowledge extraction very effectively.
منابع مشابه
Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملQuantum Inspired Swarm Optimization for Multi-Level Image Segmentation Using BDSONN Architecture
This chapter is intended to propose a quantum inspired self-supervised image segmentation method by quantum-inspired particle swarm optimization algorithm and quantum-inspired ant colony optimization algorithm, based on optimized MUSIG (OptiMUSIG) activation function with a bidirectional self-organizing neural network architecture to segment multi-level grayscale images. The proposed quantum-in...
متن کاملLand Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A Remote Sensing Perspective
-The findings of recent studies are showing strong evidence to the fact that some aspects of biogeography can be applied to solve specific problems in science and engineering. The proposed work presents a hybrid biologically inspired technique that can be adapted according to the database of expert knowledge for a more focused satellite image classification. The paper also presents a comparativ...
متن کاملI – Scientific Activity during Your Fellowship
Image thresholding is well accepted and one of the most imperative practices to accomplish image segmentation. This has been widely studied over the past few decades. However, as the multi-level thresholding computationally takes more time when level increases, hence, in this article, quantum mechanism is used to propose six different quantum inspired meta-heuristic methods for performing multi...
متن کامل